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Causal evidence is often ambiguous, and ambiguous evidence often gives rise to inferential dependen-
cies, where learning whether one cue causes an effect leads the reasoner to make inferences about
whether other cues cause the effect. There are 2 main approaches to explaining inferential dependencies.
One approach, adopted by Bayesian and propositional models, distributes belief across multiple expla-
nations, thereby representing ambiguity explicitly. The other approach, adopted by many associative
models, posits within-compound associations—associations that form between potential causes—that,
together with associations between causes and effects, support inferences about related cues. Although
these fundamentally different approaches explain many of the same results in the causal literature, they
can be distinguished, theoretically and experimentally. We present an analysis of the differences between
these approaches and, through a series of experiments, demonstrate that models that distribute belief
across multiple explanations provide a better characterization of human causal reasoning than models that
adopt the associative approach.

Keywords: causal inference, inferential dependencies, retrospective revaluation, cue competition

Causal evidence is often ambiguous. When trying to identify the
cause of a recent illness, the reason why a friend failed to return a
phone call, or the cause of a car accident, possible explanations
abound. In such situations, subsequent learning about one of the
possible causes may support inferences about the other possible
causes. Consider, for example, a traveler who becomes ill after a
flight where he ate a suspect meal and sat next to a coughing
passenger. His illness may have been caused by the meal or by his
coughing neighbor. After learning that other passengers who ate
the inflight meal did not become ill, the traveler would probably
conclude that the cause was his coughing neighbor. In such cir-
cumstances, it seems as if the traveler retrospectively reevaluates
the ambiguous initial evidence (the two plausible causes of his
illness) in light of the subsequent evidence (the harmlessness of the
inflight meal). Consequently, the inference is said to involve
retrospective revaluation (e.g., Van Hamme & Wasserman, 1994).
More generally, we say that there is an inferential dependency
between two possible causes when learning about one of them can
support an inference regarding the other.

How should we explain inferential dependencies in causal rea-
soning? There are two main approaches to the problem. The
associative approach explains inferential dependencies by utilizing
within-compound associations—associations that form between
potential causes, in addition to the typical associations between
each cause and its effect (e.g., Dickinson & Burke, 1996; Stout &
Miller, 2007; Van Hamme & Wasserman, 1994). Within-
compound associations are assumed to form when potential causes
co-occur, as is typically the case when there is confounding and
thus the evidence is ambiguous. The association between co-
occurring cues—say, potential causes c1 and c2—allows the
weight of the association between c1 and the effect e to be updated
for events (trials) on which c1 is absent; when c2 occurs, its
activation can activate c1 via the within-compound association.
This is unlike in typical associative models, in which only cues that
are present are activated and eligible for updating. The within-
compound association thereby provides a representation for ex-
plaining inferential dependencies in situations involving ambigu-
ity. For example, an associative model might posit that the
traveler’s meal and the coughing neighbor are associated through
a within-compound association. The within-compound association
could be used to support the inference that, if one of the cues is not
causal, then the other should be. Note, however, that at any given
moment, an associative network, regardless of whether it supports
within-compound associations, is in a single state where each
associative strength is estimated by a single value.

Thus, various alternative explanations of ambiguous evidence
would have to map onto the same state of an associative network.
In other words, the approach does not provide a means for repre-
senting multiple explanations at the same time. For example,
consider a series of trials in which two cues, A and B, simultane-
ously occur and a target effect follows. In an associative network,
it seems reasonable to represent this ambiguous evidence by a state
where each of the two cues has a cue–effect association with
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moderate strength. However, consider two explanations of the
ambiguous pattern of events: (a) Both cues cause the effect, each
with a moderate causal strength, or (b) only one cue causes the
effect and that cue causes the effect every time, but it is unknown
which cue is the cause. These explanations are distinct, and they
imply different inferential dependencies. They also involve differ-
ent types of uncertainty: The first involves uncertainty regarding
the causal mechanism (e.g., information on some enabling condi-
tions is missing, so that the cause leads to the effect only some-
times), and the second involves uncertainty regarding which cue is
causal (i.e., causal structure). Yet the representation of the ambig-
uous evidence by a single network state means that there is only a
single cue–effect association for each cue.

Suppose a new trial indicates that introducing Cue A brings
about the effect. For the first explanation, this new information
from the single trial has no significance; both cues remain candi-
date causes. But for the second explanation, the same information
should lead to a revision of belief: Cue B becomes eliminated as a
candidate cause. A single network state cannot capture these
different implications.

In contrast, the belief-distribution approach represents multiple
explanations of ambiguous evidence and distributes belief across
the possible explanations in accordance with the plausibility of
each explanation (e.g., Kruschke, 2008). Returning to our traveler
example, given that the traveler became ill, a belief-distribution
approach may distribute belief across three alternative explana-
tions where the illness is attributed to (a) the inflight meal alone,
(b) the coughing neighbor alone, or (c) both the inflight meal and
the coughing neighbor.1 The belief-distribution approach predicts
that the reasoner should entertain all three explanations at the same
time, each as a distinct possibility with its respective degree of
plausibility, in contrast to the conflation of all possible explana-
tions corresponding to the single state of an associative network at
one moment.

Belief distribution can be formalized in terms of propositional
logic (e.g., De Houwer, Beckers, & Vandorpe, 2005; Lovibond,
2003) or Bayesian inference, where the distribution of belief is
captured by probability distributions over alternative hypotheses
(Jaynes, 2003; see also Duda, Hart, & Stork, 2000). Because
Bayesian models make fine-grained probabilistic predictions that
can be quantitatively compared to the predictions of the associative
models, we focus on Bayesian rather than propositional models
when evaluating the belief-distribution approach. If Bayesian mod-
els account for human judgments better than associative models, it
would indicate that intuitive inferential dependencies involve be-
lief distribution.

Bayesian models, which exemplify the belief-distribution ap-
proach, have been widely used to account for human causal infer-
ence (e.g., Griffiths & Tenenbaum, 2005, 2009; Lu, Yuille, Lilje-
holm, Cheng, & Holyoak, 2008), with greater success than the
most well-known associative learning model, that of Rescorla and
Wagner (R-W) model (Rescorla & Wagner, 1972; for a review, see
Holyoak & Cheng, 2011). However, Bayesian models have not
been directly compared across multiple paradigms to the more
advanced associative models that can explain retrospective reval-
uation. The comparisons have instead focused on a single asso-
ciative model (the R-W model) and a few experimental paradigms
(mostly forward and backward blocking; e.g., Daw, Courville, &
Dayan, 2008; Kruschke, 2008; Lu, Rojas, Becker, & Yuille, 2008;

Sobel, Tenenbaum, & Gopnik, 2004). Moreover, because the typ-
ical Bayesian model differs from the typical associative model not
only in how it represents ambiguous evidence but also along
various other dimensions, a direct comparison between two models
fails to establish why one model might succeed where the other
model fails.

Therefore, although we compare specific models that represent
the belief-distribution and associative approaches, our goal is not
to compare the models per se. Instead, the present article aims to
study a fundamental difference between the associative and belief-
distribution approaches: namely, the difference between the rep-
resentation of ambiguous conclusions in each approach. Previous
discussions of associative models have not been framed in terms of
ambiguous evidence and inferential dependencies, being typically
framed in terms of retrospective revaluation instead. We reframe
the discussion to reveal a basic and general weakness of the
associative approach, with and without within-compound associ-
ations. Toward this end, we compare these approaches from a
computational perspective and develop empirical tests that clearly
differentiate between them. In particular, we consider the impli-
cations of these approaches in situations where (a) there is ambig-
uous evidence, which often creates inferential dependencies, and
(b) the evidence is unambiguous but within-compound associa-
tions predict inferential dependencies.

Previous research indicates that model predictions may depend
on a variation that applies to both Bayesian and associative mod-
els—namely, whether the generating function is linear or noisy-
logical (i.e., noisy-or and noisy-and-not; Cheng, 1997; Griffiths &
Tenenbaum, 2005; Lu, Yuille, et al., 2008). These variants, which
reflect different definitions of independence, specify different
ways of relating causal structures to observations. We consider
both variants of both kinds of models. Thus, our auxiliary goal is
to assess the role of the generating function in explaining inferen-
tial dependencies.

Computational Approaches to Explaining Inferential
Dependencies

We evaluate the belief-distribution and associative approaches
by considering a Bayesian model of causal inference, adapted from
the proposal of Griffiths and Tenenbaum (2005), and contrasting it
with four associative models: the Rescorla-Wagner model (Re-
scorla & Wagner, 1972) and three advanced associative models.
There are significant differences among the three advanced asso-
ciative models; however, all infer a within-compound association
when cues are presented simultaneously and then use the learned
within-compound association to establish an inferential depen-
dency between the cues. Additionally, all of the associative models
share the assumption that the learner forms and updates a single
hypothesis that best “fits” the observed data.

To illustrate the workings of the models, we consider the infer-
ential dependencies created by the ambiguous evidence in varia-
tions of recovery from overshadowing (e.g., Kaufman & Bolles,
1981; Matzel, Schactman, & Miller, 1985) and backward blocking
(e.g., Shanks, 1985). In both paradigms, the initial ambiguous
evidence shows that the effect occurred following the presentation

1 The second explanation from two paragraphs earlier corresponds to the
possibility that either Explanation a or Explanation b here is correct.
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of two cues (AB�). Here and in the rest of this article, the possible
causes and effects that we consider are all binary variables with a
“present” and an “absent” value. Thus, we denote the potential
causes that are present on a trial-type by letters and the presence
and absence of the effect by � and –, respectively. In recovery
from overshadowing (AB� A–), the subsequent A– observation
shows that one of the two cues (labeled A here) does not cause the
effect. In backward blocking (AB� A�), the subsequent A�
observation shows that one of the cues causes the effect. In studies
of Pavlovian conditioning with rats (e.g., Kaufman & Bolles,
1981; Miller & Matute, 1996) and in studies of human causal
learning (e.g., Larkin, Aitken, & Dickinson, 1998; Shanks, 1985)
with both recovery from overshadowing and backward blocking
paradigms, researchers have found that the ambiguous AB� trials
can create inferential dependencies between the cues.

Most of the models predict that when compared with a control
condition (AB�), people have a stronger expectation that Cue B
causes the effect in recovery from overshadowing and a weaker
expectation that it does so in backward blocking. However, the
models make different predictions about the degree of uncertainty
regarding whether Cue B causes, or does not cause, the effect in
recovery from overshadowing and in backward blocking.

A Bayesian Model

Figure 1 illustrates how our Bayesian model explains recovery
from overshadowing and backward blocking. When presented with
ambiguous AB� evidence, the model distributes belief across four
explanations (see the top row of Figure 1). This distribution of
belief implies an inferential dependency between the cues, as
revealed by two unequal conditional probabilities: the probability

that Cue B causes the effect given that Cue A does not cause the
effect, P[B ¡ E | � (A ¡ E)] � .25/(.25 � .00) � 1.0 (see the first
and third graphs in the top row of Figure 1), and the probability
that Cue B causes the effect given that Cue A causes the effect,
P(B ¡ E | A ¡ E) � .50/(.50 � .25) � .67 (see the second and
fourth graphs in the top row of Figure 1). These differing proba-
bilities imply that learning whether Cue A causes the effect pro-
vides information about whether Cue B causes the effect. The final
distribution of belief in recovery from overshadowing (see lower
left graphs in Figure 1) and backward blocking (see lower right
graphs in Figure 1) illustrates the inferences supported by the
inferential dependency.

The Bayesian model that we develop, an extension of Griffiths
and Tenenbaum’s (2005) model, allows the causal links to be
generative or preventive. Like theirs, our model represents each
explanation as a causal graph. In experiments involving preven-
tive causes, we consider causal graphs where each causal link can
be generative, preventive, or nonexistent. In experiments without
preventive causes, we only consider the causal graphs where the
causal links are either generative or nonexistent. Because we only
consider experiments where there are multiple cues and a single
effect, we represent a causal graph as a vector of causal links, l,
letting li � 1 denote a generative causal relationship between cue
i and the effect, li � 0 denote the absence of a causal relationship,
and li � –1 denote a preventive causal relationship. For n cues,
there are 3n causal graphs to consider when we allow for preven-
tive causation and 2n causal graphs when we do not. We associate
each causal link with a weight that represents the strength of the
causal relationship, and we represent these weights as a vector w,
where 0 � wi � 1 for each wi. For simplicity, we omit consider-

Figure 1. The predictions of the Bayesian model for recovery from overshadowing and backward blocking.
Explanations of the data (e.g., 3 AB�) are represented as causal graphs, where arrows represent causal
relationships. The causal graph where both cues cause the effect represents an explanation where Cues A and B
independently (and not conjunctively) cause the effect. The number below a causal graph represents the posterior
probability of the explanation given the data. Observe that the model distributes belief across multiple
explanations and that evidence indicating whether Cue A causes the effect influences the model’s predictions
about whether Cue B causes the effect.
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ation of conjunctive causes under the assumption that people only
posit conjunctive causes when the observations cannot be ex-
plained by simple causes alone (Novick & Cheng, 2004). None of
our experiments contain observations of this sort.

To represent a trial, we let the vector c denote the presence (ci �
1) or absence (ci � 0) of the cues and let e denote the presence
(e � 1) or absence (e � 0) of the effect. In order to specify the
probability of the effect as a function of its causes, we adopt the
noisy-or and noisy-and-not generating functions for generative and
preventive causation, respectively. These functions are derived
from the assumptions of causal power (Cheng, 1997). Let G be the
set of indexes such that li � 1 (i.e., generative causes of e), and let
P be the set of indexes such that li � –1 (preventers of e). Using
the noisy-or and noisy-and-not functions, the probability of the
effect is

P(e � 1�c, l, w) ��1 � �
g�G

(1 � wg)
cg� �

p�P
(1 � wp)

cp. (1)

Given data D that provides a frequency count N(e, c) for each
combination of the presence/absence of the effect and the cues and
the assumption that the trials are independent, the likelihood of the
data can be written as a function of the causal graph and its
weights:

P(D� w, l) � �
(e,c)

P(e�c, l, w)N(e,c). (2)

As shown in Equations 3–5, where n is the number of cues and
t is the number of possible values for a causal link (t � 3 when
preventive causes are considered; t � 2 otherwise), we assume
uninformative prior distributions on w and l:

P(w, l) � P(w�l)P(l)

P(l) � �1

t �n

P(w�l) � unif .

(3–5)

Although sparse and strong priors characterize people’s prior
beliefs better than uninformative priors (Lu, Yuille, et al., 2008),
the adoption of uninformative priors allows us to examine the
importance of belief distribution by comparing the Bayesian model
to associative models that do not incorporate prior beliefs about
causal strength. From Bayes’s theorem, the posterior distribution
of the links and weights can be calculated as

P(w, l�D) �
1

Z
P(D�w, l)P(w�l)P(l). (6)

The variable Z represents a normalizing constant. Given this
joint probability distribution, we can answer questions about both
causal structure (i.e., whether a cue prevents, causes, or does not
influence the effect) and causal strength (i.e., how strongly the cue
causes or prevents the effect). For causal structure, the posterior
probability that a cue is a generative cause is the sum of the
posterior probabilities of the causal graphs where the cue is
generative. Accordingly, the posterior probability that cue i is
causal is

P(li � 1�D) � �
l : li�1

� P(w, l�D)dw. (7)

Note that Equation 7 marginalizes over the other causal links
and over the weights. Analogous calculations apply for the poste-
rior probabilities that cue i is preventive (li � –1) or noncausal
(li � 0). To predict people’s answers to causal structure questions,
we use the mean value of li.

For causal strength questions, we define the mean causal
strength of cue i as

wili�� �
l

� wiliP(w, l�D)dw. (8)

The mean causal strength ranges from –1.0 for a deterministic
preventer to 1.0 for a deterministic generative cause.

Although the computations in these equations involve integra-
tion, the analytic integration of these equations is tractable for
small data sets—like those in the present article—with the assis-
tance of a computer algebra program.

This model explains the inferential dependencies in recovery
from overshadowing and backward blocking by how belief distri-
bution across the multiple explanations changes as disambiguating
evidence emerges. As shown in Figure 1, when provided with
ambiguous AB� evidence, the model distributes belief across the
explanations where at least one of the cues causes the effect.
Subsequent evidence that Cue A does not cause the effect (A–
trials in recovery from overshadowing) therefore implies that Cue
B must. In contrast, subsequent evidence that Cue A causes the
effect (A� trials in backward blocking) leaves Cue B as a poten-
tial, if less probable, cause of the effect. The Bayesian model
therefore predicts that people will be more certain about the causal
influence of Cue B in recovery from overshadowing than in
backward blocking.

Associative Models

In response to the failure of the R-W model (Rescorla &
Wagner, 1972) to account for inferential dependencies, three major
associative models have been developed: Van Hamme and Was-
serman’s (1994) learning rule, the comparator hypothesis (Dennis-
ton, Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout &
Miller, 2007), and the modified sometimes-opponent-process
(SOP) model (Dickinson & Burke, 1996). All of these models
assume that the learner learns and utilizes within-compound asso-
ciations, but they differ in significant ways in implementing these
computational constraints, and therefore yield distinct predictions
for various paradigms. To illustrate the associative approach, we
review the R-W model and Van Hamme and Wasserman’s learn-
ing rule presently. The comparator hypothesis and the modified
SOP model are presented in Appendix A.

Rescorla-Wagner model. The R-W model (Rescorla & Wag-
ner, 1972) is the most well-known associative model. The R-W
model adopts the following learning rule, which modifies the
associations between a cue i and the effect e in order to reduce
prediction error:

�Vi � sise	T � �
j

Vj)
. (9)

In this learning rule, si and se are learning rate parameters, where
si represents the salience of cue i when it is present (si � �) or
absent (si � 0), se represents the salience of e when it is present
(se � �1) or absent (se � �2, where �2 is typically assumed to be
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a positive number less than �1). T represents the actual presence
(T � 1) or absence (T � 0) of e, and Vi represents the current
association between cue i and e. The summation, which occurs
over all cues present on a given trial, is the predicted strength of e.
The difference between T and the summation therefore represents
the prediction error (i.e., the observed value minus the expected
value), and the model modifies the association between the cue and
e so that the error will be smaller on the same trials in the future.

The R-W model accounts for many notable experimental find-
ings, including forward blocking (A� AB�; e.g., Kamin, 1969).
Compared with a control condition without the initial A� trials
(i.e., AB� alone), forward blocking produces a weaker association
between cue B and e. The R-W model explains this finding,
because it learns a strong association between A and e during the
A� trials. This stronger association leads to a smaller prediction
error on the AB� trials, leaving less room to increase the associ-
ation between Cue B and e.

The explanation of inferential dependencies is more problem-
atic, however. Consider the predictions of the R-W model when
presented with recovery from overshadowing (AB� A–) and
backward blocking (AB� A�). Because the R-W model does not
modify the associations of absent cues (si � 0 for absent cues), it
does not predict any learning about Cue B during the A� or A–
trials.

As mentioned earlier, other associative models have been pro-
posed to explain the existence of inferential dependencies by
linking the presented and nonpresented cues through within-
compound associations. Van Hamme and Wasserman’s (1994)
learning rule is one such model.

Van Hamme and Wasserman’s learning rule. Van Hamme
and Wasserman (1994) modified the R-W model by positing (a)
within-compound associations between the cues that are presented
together and (b) a negative learning rate for absent but expected
cues, for which the expectation comes from the established within-
compound associations with a present cue. Van Hamme and Was-
serman did not specify a formal mechanism that controls the
formation of within-compound associations, but it is typically
assumed that within-compound associations form between cues
that are presented simultaneously. We adopt this assumption when
deriving the predictions of their learning rule. The learning rule
retains Equation 9 but assigns a negative learning rate to nonpre-
sented cues that are expected on the basis of a within-compound
association (i.e., expected but absent cues). More specifically, the
learning rate of the cue is set to different values depending on
whether the cue is present (si � �1), expected-but-absent (si � �2,
where �2 is negative), or unexpected-and-absent (si � 0). Like the
R-W model, Van Hamme and Wasserman’s learning rule allows
the learning rate to vary as a function of the presence and absence
of e.

These modifications allow the learning rule to explain the ex-
istence of inferential dependencies in recovery from overshadow-
ing (AB� A–) and backward blocking (AB� A�). Figure 2
shows the asymptotic associations predicted by the model when
�2 � –�1 and �1 � �2. On the AB� trials, the learning rule
infers—just as the R-W learning rule would—that e is explained
by both co-occurring cues. The within-compound association pos-
ited by the modified learning rule, however, provides the basis for
assigning Cue B a negative learning rate during subsequent A– or
A� trials. As a consequence, Van Hamme and Wasserman’s

(1994) learning rule predicts that the Cue B–effect association will
decrease during the A� trials of backward blocking and increase
during the A– trials of recovery from overshadowing.

The learning rule predicts that VB, the association between Cue
B and the effect, will be at least as close to 0.0 in backward
blocking as it will be close to 1.0 in recovery from overshadowing.
To see why, note that VB will only asymptotically approach 0.5 on
the AB� trials and that A� trials will lead to more learning than
A– trials, given the standard assumption that the occurrence of the
effect is more salient than its absence (i.e., �1 � �2). Thus, VB will
be closer to 0.0 in backward blocking than it is close to 1.0 in
recovery from overshadowing. For a binary effect, associative
strength can be viewed as the expected probability of the effect
given the cue. This expected probability should presumably de-
pend on both the reasoner’s certainty that the cue causes the effect
and the estimated causal strength of the cue assuming it causes the
effect. Associative models do not differentiate between certainty
and causal strength, however, so we treat associative strength as
the associative estimate of certainty. Therefore, the learning rule
predicts—in contrast to the Bayesian model—that people will be
more certain that Cue B does not cause the effect in backward
blocking than that the cue causes the effect in recovery from
overshadowing (because VB will be closer to zero in backward
blocking than close to one in recovery from overshadowing).

Additional Models

We primarily aim to contrast belief-distribution models with
associative models that adopt within-compound associations with
regard to their representations of ambiguous evidence. But these
models also make different assumptions about how causes com-
bine. Our belief-distribution model posits that causal strengths

Figure 2. The explanation of recovery from overshadowing and back-
ward blocking according to Van Hamme and Wasserman’s (1994) learning
rule. The arrows represent associations between the cues and the effect, and
the adjacent numbers represent the asymptotic associative strengths. The
dashed line represents a within-compound association between Cues A and
B. The within-compound association supports learning about the associa-
tion between Cue B and the effect on the A– and A� trials, even though
Cue B is not present on those trials.
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combine according to noisy-logical functions (see Equation 1), and
the associative models posit that associations combine additively
(e.g., the summation in Equation 9).

To explore the independent contributions of these differences,
we consider two additional models: a linear Bayesian model with
an additive combination rule and an associative model with a
noisy-logical combination rule. Other researchers have considered
Bayesian models with additive combination rules, either in isola-
tion (e.g., Dayan & Kakade, 2001) or in comparison to noisy-
logical combination rules (Griffiths & Tenenbaum, 2005;
Kruschke, 2008). The linear Bayesian model that we develop,
similar to these models, is identical to the noisy-logical Bayesian
model presented earlier except that Equation 1 is replaced by the
following equation:

P(e � 1�c, l, w) � �
g�G

(wg)
cg � �

p�P
(wp)

cp. (10)

Note that Equation 10 only produces a valid probability distri-
bution when the weights are constrained so that the function never
produces a value less than 0.0 or greater than 1.0. We constrain the
weights as needed to achieve this goal. For example, when Cues A
and B are presented together and assumed to be causal, we add a
constraint that wa � wb � 1.0. We refer to the model using
Equation 11 as the linear Bayesian model. The linear Bayesian
model is closely related to models of causal learning based on the
Kalman filter (e.g., Kruschke, 2008). We adopt the linear Bayesian
model rather than the Kalman filter because the Kalman filter
introduces additional assumptions that complicate the comparison
to the noisy-logical Bayesian model. Note, for example, that the
Kalman filter assumes that the power of a cause to produce its
effect gradually changes over time. When we refer to “the Bayes-
ian model” without qualification, we are referring to the belief-
distribution model that uses the noisy-logical combinations rules in
Equation 1.

The noisy-logical associative model, adapted from Danks, Grif-
fiths, and Tenenbaum (2003), is identical to Van Hamme and
Wasserman’s (1994) learning rule except that Equation 9 is re-
placed with the following equation, which reflects the noisy-
logical combination rule:

�Vi � sise�T ��1 � �
g:Vg�0

(1 � Vg)�� �
p:Vp�0

(1 � |Vp|)��
(11)

We assume that the products in this equation are only computed
over the cues that are present on a given trial. Equation 11
performs error-correction in the same way as Equation 9 but
derives predictions using the noisy-logical function rather than a
linear function.

Distinguishing Belief Distribution and
Within-Compound Associations

As illustrated earlier, belief-distribution models and associative
models augmented with within-compound associations make dif-
ferent predictions regarding recovery from overshadowing and
backward blocking. Experiments 1A and 1B tested some situations
where the models predict different inferential dependencies.

In other situations, the associative models predict inferential
dependencies, even though the belief-distribution model does not.

Because the associative models predict the formation of within-
compound associations whenever two cues are presented simulta-
neously, these models predict inferential dependencies even in the
absence of ambiguity about the causal influence of the target cue.
Consider a situation where the effect follows the presentation of
one cue (A�) as well as the presentation of that cue and another
cue (AB�). Now, suppose also that the effect is later observed to
follow the presentation of the other cue (B�). Because associative
models predict that the AB� observations create a within-
compound association between the cues, they predict that subse-
quent learning about Cue B, even though the causal status of Cue
A is already known, might still influence inferences about Cue A.
For example, Van Hamme and Wasserman’s (1994) learning rule
predicts that the B� trials will diminish the Cue A–effect associ-
ation substantially. Models that distribute belief across multiple
explanations make the more intuitive prediction that once there is
no uncertainty regarding the causal influence of a cue, beliefs
about the cue will remain unchanged so long as new information
does not contradict those beliefs. We tested these predictions in
Experiment 2.

Experiments 1A and 1B

The different models often make competing predictions about
the exact form of the inferential dependencies. For example, as
mentioned previously, the Bayesian model predicts that people
will be more certain that Cue B causes the effect in recovery from
overshadowing than certain that Cue B does not cause the effect in
backward blocking. Van Hamme and Wasserman’s (1994) learn-
ing rule predicts the opposite: that people will be less certain that
Cue B causes the effect in recovery from overshadowing than they
will be certain that Cue B does not cause the effect in backward
blocking. We tested these predictions in Experiment 1A.

For Experiment 1A, the Bayesian model, the modified SOP
model, and the comparator hypothesis make similar predictions.
We therefore consider some additional procedures in Experiment
1B. In particular, we investigate recovery from preventive over-
shadowing (A� and ABC– trials followed by AB� trials) and
preventive backward blocking (A� trials and ABC– trials fol-
lowed by AB– trials). For both procedures, we were especially
interested in whether participants would make inferences about
Cue C during the AB trials. As becomes clear in the experimental
results, these preventive procedures are useful for discriminating
between the Bayesian and the other associative models.

Method

Participants. Thirty-two undergraduate students participated
in Experiment 1A, and another 32 undergraduate students partic-
ipated in Experiment 1B. All were from the University of Califor-
nia, Los Angeles and participated for course credit.

Materials and procedure. Participants were asked to diag-
nose the fruit allergies of the patients in a doctor’s office by
discovering the fruits that caused each patient’s allergic reactions.
The cover story explained that the diagnoses would be made by
reviewing “fruit journals.” Each fruit journal provided a daily log
of the fruits that a patient ate and the occurrence of his or her
allergic reactions. Participants in Experiment 1B also read that
“fruit allergies can be both caused and prevented” in that “some
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fruits may cause the allergic reaction and other fruits may prevent
it.”

Participants in each experiment viewed five fruit journals,
whose contents are summarized in Table 1. The journals were
presented in a randomized order. The same cue corresponded to
different fruits across fruit journals (i.e., Cue A was a different
fruit in different journals), and the assignment of the fruits to the
cues in the journals was randomized. Each fruit journal contained
multiple phases. The phases were presented sequentially, but the
order of the trials within a phase was randomized. Each phase
contained five trials of each trial type (e.g., there were five AB�
trials in the first phase of the recovery from overshadowing fruit
journal).

Each trial displayed the pictures and names of whichever fruits
the patient ate on that day. The fruits were displayed alone for 1.5
s, at which point a cartoon face appeared. The cartoon face
signified whether the patient had an allergic reaction on that day:
A smiley face with the text “ok” indicated that the patient did not
have a reaction and a frowning face with the text “allergic reac-
tion” indicated that the patient had a reaction. The trial ended after
the fruits and cartoon face were displayed together for 2.0 s.

After a fruit journal was presented, we assessed the causal
beliefs of the participants. In Experiment 1A, participants were
asked whether the fruit caused or did nothing to influence the
patient’s allergic reactions. In Experiment 1B, participants were
asked whether the fruit caused, prevented, or did nothing to influ-
ence the patient’s allergic reactions. These questions assess causal
structure (whether a causal relationship exists; Lu, Yuille, et al.,
2008).

Responses were recorded on sliding scales with five tick marks
in Experiment 1A and nine tick marks in Experiment 1B, with each
mark labeled to encourage participants to distinguish between
different degrees of a cue “maybe” causing an effect. In Experi-
ments 1A and 1B, respectively, the leftmost mark (labeled “defi-
nitely not a cause”) and middle mark (labeled “neither” cause nor
preventer) corresponded to cues that did not influence the effect.
The other marks corresponded to cues that were “possible (but not
likely),” “somewhat likely,” “probable,” and “definite” causes and
preventers. Responses were coded as integers ranging from 0 to 4

in Experiment 1A and –4 to 4 in Experiment 1B. Responses were
divided by the highest possible response (4) to produce a causal
rating with a maximum value of 1.0 (corresponding to a cue that
“definitely” causes the effect).

Results

Table 2 shows the causal ratings for each cue. We report
analyses of the causal ratings that provide the clearest tests of the
models only: those of Cue B in Experiment 1A and Cue C in
Experiment 1B. Figure 3 displays the causal ratings and model
predictions for these cues. Observe that the causal ratings in the
experimental and corresponding control conditions differed for
recovery from overshadowing, t(31) � 3.47, p � .01; backward
blocking, t(31) � 2.18, p � .05; recovery from preventive over-
shadowing, t(31) � 3.74, p � .01; and preventive backward
blocking, t(31) � 3.74, p � .01. These differences reflect the
existence of inferential dependencies. The causal ratings for the
target cues did not differ significantly across the control conditions
in either Experiment 1A, F(2, 62) � 1.19, p � .31, or Experiment
1B, F(2, 62) � 2.14, p � .13.

As expected, participants were more certain about the causal
influence of the target cue in the recovery from overshadowing
condition than in the backward blocking condition: Observe that
the mean causal rating for Cue B in recovery from overshadowing
(0.77) was much closer to 1.0 than the mean causal rating for Cue
B in backward blocking (0.48) was close to zero. The difference in
certainty was less pronounced between recovery from preventive
overshadowing (–0.75 causal rating for Cue C) and preventive
backward blocking (–0.29 causal rating for Cue C). To explore
these trends in greater detail and analyze their statistical signifi-
cance, we considered the proportion of participants who were
certain about the influence of the target cue in each condition. In
Experiment 1A, 15 out of 32 participants in the recovery from
overshadowing condition believed that Cue B was a “definite”
cause of the effect (i.e., provided a causal rating of 1.0), whereas
none of the participants in the backward blocking condition indi-
cated that Cue B was “definitely not a cause” (i.e., provided a
causal rating of 0.0), 	2(1, N � 15) � 13.07, p � .001 (by
McNemar’s test). In Experiment 1B, 18 out of 32 participants in
the recovery from preventive overshadowing condition believed
that Cue C was a “definite” preventer (i.e., gave a rating of –1.0),
whereas only eight out of 32 participants in the preventive back-
ward blocking condition believed that Cue C was neither a cause
nor a preventer (i.e., gave a rating of 0.0), 	2(1, N � 18) � 4.5,
p � .05 (by McNemar’s test).

Model predictions. The predictions of the associative models
are parameter-dependent, so we set the parameters of the associa-
tive models to maximize the fit to the experimental results. Ap-
pendix B describes the procedure used to select the model param-
eters.

The Bayesian model correctly predicts that while the target cue
in Experiment 1A was unambiguously causal in recovery from
overshadowing (li � 1.0; see the leftmost bar of the Bayesian
model predictions in Figure 3), its causal influence was ambiguous
in backward blocking (li � 0.5; see the second bar). The Bayesian
model also predicts the analogous findings for the preventive
variants of these paradigms (Experiment 1B). None of the other
models predict all four of these basic findings. The R-W model

Table 1
The Contents of the Fruit Journals Shown to Participants in
Experiments 1A and 1B

Fruit journal Phase 1 Phase 2 Phase 3

Experiment 1A
RO AB� c� d
 A

BB AB� c� d
 A�
RO control AB� c� d
 d

BB control AB� c� d
 c�
No-trial control AB� c� d


Experiment 1B
pRO A� B
 C
 d
 A� ABC
 A� AB�
pBB A� B
 C
 d
 A� ABC
 A� AB

pRO control A� B
 C
 d
 A� ABC
 A� Ad�
pBB control A� B
 C
 d
 A� ABC
 A� Ad

No-trial control A� B
 C
 d
 A� ABC
 A�

Note. RO � recovery from overshadowing; BB � backward blocking;
pRO � recovery from preventive overshadowing; pBB � preventive
backward blocking. Filler cues are written in lowercase.
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simply fails to predict any retrospective revaluation. Van Hamme
and Wasserman’s (1994) rule erroneously predicts that the causal
rating for the target cue will be slightly closer to 0.5 in recovery
from overshadowing than in backward blocking. (The learning rule
also predicts that the target cue is always close to –0.5 in Exper-
iment 1B, although this prediction is parameter dependent.2) The
comparator hypothesis predicts the causal ratings in Experiment
1A but erroneously predicts that the causal rating for Cue C will be
nearly 0.0 (corresponding to a cue that is definitely not causal) in
the recovery from preventive overshadowing condition of Exper-
iment 1B (note the near-zero value of the leftmost bar for Exper-
iment 1B in Figure 3). The higher order comparison process
accounts for this erroneous prediction (for details, see Stout &
Miller, 2007). Finally, the modified SOP model barely predicts any
retrospective revaluation at all given its best fitting parameters.
Furthermore, even when the qualitative predictions of the modified
SOP are considered, it fails to predict the results (see Appendix A).

The noisy-logical associative model correctly predicts that re-
covery from overshadowing is less ambiguous than backward
blocking but erroneously predicts more negative causal ratings in
the preventive backward blocking condition than in the relevant
control condition. The predictions of the two Bayesian models are
similar, suggesting that the results are generally consistent with
both the noisy-logical and linear combination rules. Note, how-
ever, that the linear Bayesian model erroneously predicts that
people should be quite certain that the target cue is noncausal in
both generative and preventive backward blocking conditions.

Overall, the standard and linear Bayesian model produced the
highest rank-order correlations with the data (rs � .98, MSE �
0.026 and rs � .98, MSE � 0.019, respectively)—higher than that
of the R-W model (rs � .95, MSE � 0.00118), Van Hamme and
Wasserman’s (1994) learning rule (rs � .97, MSE � 0.0089), the
comparator hypothesis (rs � .91, MSE � 0.064), the modified SOP
model (rs � .91, MSE � n/a), and the noisy-logical associative
model (rs � .96; MSE � 0.010). Although the MSEs of some of

the associative models were lower than the MSE of the Bayesian
model, this is not surprising given that the comparison is between
the parameter-free Bayesian model and associative models with
free parameters that were selected to maximize the fit to the data.

Discussion

Why was the Bayesian model more successful in explaining the
inferential dependencies than the associative models? By the in-
corporation of deductive inference, the Bayesian model implicitly
encodes not only that an inferential dependency exists but also its
specific form. For example, if belief is distributed across those
explanations where at least one of the cues causes the effect, it
implies that (a) if one of the cues does not cause the effect, then the
other must and (b) if one of the cues causes the effect, then the
other might. Within-compound associations, on the other hand, do
not use deductive logic and therefore do not directly encode the
exact form of an inferential dependency. Instead, the form of
the inferential dependency depends on interactions between the
within-compound associations (which encode that an inferential
dependency exists) and other mechanisms (which control how the
inferential dependency is expressed). Experiments 1A and 1B
illustrate that these interactions predict the correct inferential de-
pendencies in some situations but not in others. Still, although
none of the associative models predict the observed results and
although belief distribution involves a more principled response to
ambiguous evidence, some modification of one of the associative
models might explain the results. We revisit this issue in the
General Discussion, preferring to discuss the other implications of
the results presently.

The belief-distribution approach implies that people will be able
to flexibly encode inferential dependencies with different forms.
For example, while AB� trials in backward blocking usually lead
people to infer that at least one of the cues causes the effect, there
may be situations where AB� evidence leads people to infer that
at most one of the cues causes the effect. Consider a field biologist
who identifies two new bird species on a remote island and
observes that something on the island is splitting coconuts apart
(AB�). Knowing that ecological niches are usually occupied by a
single species, the biologist may believe that at most one of the
bird species evolved to split coconuts. This belief distribution
creates an inferential dependency that differs from the one typi-
cally observed in backward blocking: After learning that one bird
species splits coconuts (A�), the biologist would be certain that
the other species does not split coconuts. Mitchell, Killedar, and
Lovibond (2005) manipulated whether participants’ prior beliefs
supported belief distributions like this one, and people produced
different inferential dependencies for the different belief distribu-

2 The learning rule predicts only small changes in belief during the final
phase in Experiment 1B because retrospective revaluation of Cue C on the
A and AB trials will proceed in opposite directions. For example, the
preventive backward blocking condition alternated A� and AB– trials. On
the ABC– trials in the previous phase, the learning rule infers that Va � 1.0,
Vb � Vc � –0.5. As a consequence, the learning rule overpredicts the
absent effect on the AB– trials. This should lead the learning rule to
(among other things) decrease Va. The decrease in Va, however, would lead
it to underpredict the effect on subsequent A� trials. The net result is that
Vc increases on AB– trials and decreases on A� trials. The learning rule
predicts the observed results more closely if retrospective revaluation of
Cue C is assumed to occur on AB trials but not on A trials.

Table 2
Causal Ratings for Each Cue in Experiments 1A and 1B

Fruit journal

Cue

A B C

M SD M SD M SD

Experiment 1A
RO (AB� A
) .10 .15 .77 .29
BB (AB� A�) .90 .21 .48 .19
RO control (AB� d
) .57 .17 .59 .14
BB control (AB� c�) .56 .16 .55 .16
No-trial control (AB�) .59 .15 .58 .15

Experiment 1B
pRO (A� ABC
 AB�) .94 .11 
.02 .14 �.75 .33
pBB (A� ABC
 AB
) .94 .11 
.87 .23 �.29 .24
pRO control (A� ABC
 Ad�) .88 .36 
.59 .23 �.56 .25
pBB control (A� ABC
 Ad
) .93 .13 
.51 .22 �.48 .24
No-trial control (A� ABC
) .94 .11 
.48 .27 �.51 .26

Note. RO � recovery from overshadowing; BB � backward blocking;
pRO � recovery from preventive overshadowing; pBB � preventive
backward blocking. Filler cues are written in lowercase. The mean causal
ratings for the critical cues (Cue B in Experiment 1A and Cue C in
Experiment 1B) are displayed in bold.
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tions. Additionally, the flexibility of the belief-distribution ap-
proach explains why different assumptions about how causes
combine can support different inferential dependencies (e.g.,
Beckers, De Houwer, Pineno, & Miller, 2005; Lu, Rojas, et al.,
2008). The associative models might explain these findings by
adjusting the model parameters (e.g., by adjusting the sign of �2 in
Van Hamme and Wasserman’s, 1994, learning rule) across the
different tasks, but the rationale for these parameter adjustments is
unclear.

It may be surprising that our experiment found evidence for
backward blocking (and its preventive variant), given that recovery
from overshadowing is often observed in situations where back-
ward blocking is not (Corlett et al., 2004; Larkin et al., 1998; see
also Beckers, De Houwer, Pineno, & Miller, 2005; Lovibond,
Been, Mitchell, Bouton, & Frohardt, 2003; Vandorpe & De Hou-
wer, 2005). How are we to reconcile our finding (and similar
findings such as Wasserman & Berglan, 1998; Wasserman &
Castro, 2005) with these other findings? The Bayesian model

offers one possible explanation. Although the Bayesian model
predicts backward blocking, it also predicts that target cue will
remain ambiguous in backward blocking: note that while the
model predicts that P(B ¡ E) is lower after backward blocking
than after the initial evidence (see Figure 1), P(B ¡ E) does not
approach 1.0 or 0.0 in either situation. To the extent that people fail
to distinguish between different degrees of the target cue “maybe”
causing the effect, we would expect them to provide the same
causal ratings for the target cue in backward blocking as they
provide in relevant control conditions (e.g., AB�). In short, some
experimental measures of causal beliefs may not be sensitive
enough to detect all of the changes in the participants’ beliefs.
Indeed, experiments demonstrating backward blocking have some-
times used more sensitive measures than experiments that failed to
demonstrate backward blocking. For example, Wasserman and
Berglan (1998) labeled the causal rating scale so that some of its
tick marks corresponded to cues that “definitely would not,”
“probably would not,” “possibly,” “probably would,” or “defi-

Figure 3. Causal ratings and model predictions for Cue B in Experiment 1A (B in Exp1A) and Cue C in
Experiment 1B (C in Exp1B) as a function of experimental condition. Error bars indicate standard errors. R-W �
Rescorla and Wagner (1972) model; VHW � Van Hamme and Wasserman’s (1994) learning rule; mSOP �
modified sometimes-opponent-process model; RO � recovery from overshadowing; BB � backward blocking;
pRO � recovery from preventive overshadowing; pBB � preventive backward blocking; NLA � noisy-logical
associative model.
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nitely would” cause the effect. Our experiment also used a detailed
rating scale. The experiments that did not show backward blocking
have used less detailed rating scales, labeling only the tick marks
corresponding to a cue that “definitely would not,” “possibly,” or
“definitely would” cause the effect (e.g., Larkin et al., 1998;
Lovibond et al., 2003). Furthermore, when we replicated Experi-
ment 1B with a less detailed rating scale, there was no evidence of
preventive backward blocking (Carroll, Cheng, & Lu, 2010). Of
course, the specificity of the rating scale is not the only factor that
will influence whether backward blocking is observed (e.g., see
Beckers et al., 2005; De Houwer, Beckers, & Glautier, 2002;
Lovibond et al., 2003; Miller & Matute, 1996).

Experiment 2

In Experiment 2, we investigated whether inferential dependen-
cies form between any cues that are presented simultaneously, as
the associative models predict. Table 3 shows the experimental
design. The two-cause condition combines forward and backward
blocking. The one-cause condition combines latent inhibition and
backward blocking. The associative models predict that within-
compound associations will form between Cues A and B during
the AB� trials in the two-cause condition and between Cues C and
D during the CD� trials in the one-cause condition. This leads to
the anomalous prediction that causal beliefs about Cues A and C
may be subject to revision as the participant learns about Cues B
and D.

Moreover, all four associative models predict that in the one-
cause condition the Cue C–effect association will increase during
the second learning phase. To see why, consider the predictions of
the R-W model. The R-W model predicts that Cue C–effect and
Cue D–effect associations will be zero prior to the CD� trials, so
the R-W model will have a large prediction error on CD� trials.
In response to this prediction error, the model will increase the Cue
C–effect and Cue D–effect associations. The other associative
models predict increases in the Cue C–effect association for sim-
ilar reasons. Belief-distribution models, in contrast, make a more
intuitive prediction that Cue C will still be viewed as noncausal
following the CD� trials. Admittedly, variants of these associative
models, by introducing a competitive context or by proposing a
mechanism that reduces attention to familiar cues, predict the
stability of the Cue C–effect associations. We argue in the Dis-
cussion section, however, that these modifications will ultimately
prove unsatisfactory.

The competition control condition, which makes use of the
recovery from overshadowing procedure, serves to confirm that
our experimental procedure allows within-compound associations
to form. We expected that an inferential dependency would form
between Cues E and F on the EF� trials and that the dependency

would be revealed after the subsequent F– trials. (If the procedure
does not lead to an inferential dependency, then the associative
models could explain stable causal ratings for Cues A and C by
setting the parameters to eliminate inferential dependencies; e.g.,
by setting �2 � .0 for Van Hamme and Wasserman’s, 1994,
learning rule.)

Our experimental method recalls a series of experiments where
Shanks and colleagues (Shanks, Charles, Darby, & Azmi, 1998;
Shanks, Darby, & Charles, 1998) demonstrated that people’s
causal beliefs remain stable in certain situations where associative
models predict otherwise. Shanks and colleagues explained their
experimental findings by appealing to configural processing: pro-
cessing where configurations of stimuli are represented as undi-
vided entities. In configural models (e.g., Pearce, 1987, 1994), the
stimulus composed of Cues X and Y together (XY) is represented
independently of the stimuli composed of Cue X alone (X) and
Cue Y alone (Y), and learning about the XY configuration can
exert an influence on the predicted outcome separately from its
constituent elements. Because outcome prediction is dependent on
generalization due to similarity among stimuli (e.g., Stimuli XY
and X both have Cue X in common), one might think that con-
figural models can explain inferential dependencies without the
instability of the models positing within-compound associations.
However, the generalization in configural models cannot explain
backward blocking or recovery from overshadowing. For example,
although X� trials following XY� trials would increase respond-
ing to the XY stimulus, they would not influence the strength of
responding to the Y stimulus (e.g., Pearce, 1987, 1994). The
reasons for this are that (a) because Stimuli X and Y are dissimilar,
there is no direct generalization from X to Y and (b) because
configural models (e.g., Pearce, 1987, 1994) typically assume that
the X� trials alter responding to the XY stimulus without altering
the XY–effect association per se, there is no indirect generaliza-
tion. (Even if the models supported direct or indirect generalization
between X and Y, the generalization would be in the same rather
than the opposite direction as the “competing” cue, and the model
would erroneously predict that responding to Cue Y would in-
crease following the X� trials.) Moreover, in our experiments,
unlike Shanks et al.’s, because the individual cues can already
explain the data, there is no motivation for configural cues.

Method

Participants. Eleven undergraduate students at the University
of California, Los Angeles participated for course credit.

Materials and procedure. Except where noted, the materials
and procedure were identical to those in the previous experiments.
Participants viewed the fruit journals shown in Table 3, and there
were four trials of each trial type.

To measure how causal beliefs changed over the course of the
experiment, we assessed the causal beliefs of the participants after
each phase in each fruit journal. For each fruit presented in the fruit
journal up to that point, participants were asked whether the patient
would have an allergic reaction on a day when he or she ate the
fruit (a causal strength question, Lu, Yuille, et al., 2008). Re-
sponses were made on a sliding scale with seven tick marks, with
the leftmost mark labeled “definitely not,” the middle mark labeled
“maybe,” and rightmost mark labeled “definitely.” No other tick
marks were labeled. Responses were coded as integers ranging

Table 3
Experimental Design of Experiment 2

Condition Phase 1 Phase 2 Phase 3

Two causes A� w
 AB� B�
One cause C
 x� CD� D�
Competition control y� z
 EF� F


Note. Lowercase letters represent filler cues.
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from 0 (definitely not) to 6 (definitely) and then divided by the
highest possible response (6) to produce a causal rating that ranged
from 0.0 to 1.0.

Results

Table 4 lists the causal ratings given by the participants, and
Figure 4 shows the causal ratings and model predictions for the
cues that are most relevant for differentiating between the models.
Observe that the causal ratings for Cues A and C were very stable
over the course of the experiment. In fact, each participant gave
identical causal ratings for these cues in the second and third
learning phases. By comparison, the causal rating for Cue E clearly
changed after participants learned that Cue F did not cause the
effect (F–). Moreover, contrary to the predictions of the associative
models, none of the participants gave a higher causal rating for
Cue C in the second learning phase than in the first learning
phase. Statistical tests confirmed that the causal ratings for Cue
E changed across the phases, t(10) � 5.04, p � .001, and that
the causal ratings for Cues A and C were not significantly
different across the three phases. Every participant gave the
same causal rating for Cue A in each phase; only a few
participants gave Cue C a different rating across any of the
phases, and the mean differences in the causal ratings for Cue
C between Phases 1 and 2 were small, in the opposite direction
as predicted by all of the associative models, and nonsignifi-
cant, F(2, 20) � 1.00, p � .39.3

Model predictions. The relative stabilities of the causal rat-
ings for Cues A, C, and E were only predicted by the Bayesian
model. Consistent with our findings in Experiments 1A and 1B,
the success of the Bayesian model depended on both its ability to
distribute belief across multiple explanations and on its assump-
tions about how causes combine, as revealed by the better fit of
the Bayesian model compared to the noisy-logical associative
model (which predicts substantial instability for the causal
ratings for Cues A and C) and the linear Bayesian model (which
predicts substantial instability for the causal ratings for Cue A).
We defer a discussion about why the linear Bayesian model
predicts changes in the causal ratings for Cue A until the
Discussion section.

The R-W model cannot explain why the causal ratings for Cue
E changed. None of the other associative models can explain why

the causal ratings for Cues A and C remain stable. (As before, we
selected the parameters of the associative models to maximize
their fit to the results. See Appendix B.) First, all the associative
models erroneously predict that the causal ratings for Cue C will
increase substantially during the second learning phase. In addi-
tion, Van Hamme and Wasserman’s (1994) learning rule errone-
ously predicts that people become much less certain that Cues A
and C cause the effect after the third learning phase. In fact,
because the prediction errors of the learning rule will be much
larger on the B� trials than the F– trials (given that A� trials
precede the AB� trials, VB � 0.0 after the AB� trials; on the other
hand, following the EF� trials, VF � 0.5), the learning rule
predicts that the causal ratings for Cue A will change more than
the causal ratings for Cue E. The comparator hypothesis and the
modified SOP model also erroneously predict that within-
compound associations formed during Phase 1 will lead to con-
siderable instability in the causal ratings for Cues A and C in
subsequent phases. These predictions are discussed in greater
detail in Appendix A.

The Bayesian model based on belief distribution clearly showed
better fit with human performance than all other models. Besides
explaining the qualitative pattern of results well, it provided a
better overall fit (rs � .91; MSE � 0.0074) to the data than the
R-W model (rs � .78; MSE � 0.067), Van Hamme and Wasser-
man’s (1994) learning rule (rs � .80; MSE � 0.060), the compar-
ator hypothesis (rs � .74; MSE � 0.058), the modified SOP model
(rs � .80; MSE � n/a), the linear Bayesian model (rs � .87;
MSE � 0.043), and the noisy-logical associative model (rs � .76;
MSE � 0.062).

Discussion

Contrary to the predictions of the associative models, some
simultaneous presentations of multiple cues simply do not cre-
ate inferential dependencies between those cues. Instead, as
predicted by the Bayesian model, inferential dependencies typ-
ically do not form between cues with unambiguous causal
influences (e.g., Cues A and C). Furthermore, given that par-
ticipants learned an inferential dependency between Cues E and
F, the results cannot be explained by configural processing
(e.g., Shanks, Charles, et al., 1998; Shanks, Darby, & Charles,
1998) or by the impairment of the processes that form and
utilize within-compound associations.

The specific associative models considered here cannot ex-
plain the stability of causal estimates regarding Cue C in the
second learning phase. However, some associative accounts—
including the comparator hypothesis when given a representa-
tion of the context— explain latent inhibition (Lubow & Moore,
1959), where X� trials produce a weaker cue– effect associa-
tion when they are preceded by X– trials. Might some associa-
tive accounts therefore explain the present results? There are
reasons to believe otherwise. Some of the associative models

3 Because there was a missing data cell (Cue E in the first phase), we did
not perform a statistical test on the Cue � Phase interaction across the three
phases. A quick glance at the results, however, should confirm that the
interaction exists. Furthermore, an ANOVA performed on the causal
ratings for Cues A, C, and E in the second and third phases revealed a
significant Cue � Phase interaction, F(2, 20) � 25.4, p � .001.

Table 4
Causal Ratings for Each Cue in Experiment 2

Cue

Causal rating

Phase 1 Phase 2 Phase 3

M SD M SD M SD

A .97 .07 .97 .07 .97 .07
B — .50 .00 .94 .15
C .15 .28 .06 .15 .06 .15
D — .94 .15 .94 .15
E — .52 .05 .86 .23
F — .52 .05 .12 .30

Note. The causal ratings for the critical cues are displayed in bold. A dash
indicates that participants did not provide causal ratings for the given cue
in the given phase. (Participants were not asked to provide causal ratings
for yet-to-be-encountered cues.)
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explain latent inhibition by positing that the context is estab-
lished as a competitor of Cue X during the X– trials. While a
competitive context might retard the increase in the causal
ratings for Cue C, it cannot easily explain the complete absence
of such an increase (in fact, none of the participants gave higher
causal ratings for Cue C in the second learning phase). More-
over, we note that the comparator hypothesis predicts that the
context would be a weaker competitor in the present experi-
mental procedure than in latent inhibition (for reasons having to
do with the higher order comparison process; for details, see
Blaisdell, Bristol, Gunther, & Miller, 1998). Other associative
models explain latent inhibition by positing that people pay less
attention to familiar cues (e.g., McLaren & Mackintosh, 2000;
Pearce & Hall, 1980). While a mechanism that dramatically
reduces attention to familiar cues would allow an associative
model to explain the stability of the causal ratings for Cue C, it
would also incorrectly predict that the causal ratings for Cue E
(a cue that would be familiar after the EF� trials) would remain
unchanged during the F– trials.

While we have argued that configural processing cannot explain
our experimental results, configural processing or conjunctive
causation may be important in other situations. The data from
Experiment 2 can be explained by “simple” causes combining in
accordance with the noisy-logical combination rules, but causes
are not always simple (e.g., Novick & Cheng, 2004; Shanks,
Charles, et al., 1998; Shanks, Darby, & Charles, 1998). In situa-
tions where simple causes cannot explain the data, people would
be more likely to invoke conjunctive causes or to rely on config-
ural processing.

Readers may be surprised that, despite our suggestion that
belief-distribution accounts do not predict inferential dependen-
cies between cues with unambiguous causal influences unless
the new observations contradict past beliefs, the linear Bayesian
model predicts that the causal ratings for Cue A will change
during the final learning phase. Our suggestion holds, because
for the linear Bayesian model, the new observations do contra-
dict past beliefs. To see why, consider the predictions of the
linear Bayesian model regarding Cues A and B (Kruschke,

Figure 4. Causal ratings and model predictions for selected cues in Experiment 2. Note that only the
Bayesian model predicts the relative stabilities of the causal ratings for the cues. Error bars correspond to
standard errors. R-W � Rescorla and Wagner (1972) model; VHW � Van Hamme and Wasserman’s (1994)
learning rule; mSOP � modified sometimes-opponent-process model; NLA � noisy-logical associative
model.
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2008, offered a similar explanation in the context of deriving
predictions for the Kalman filter). From the A� and AB�
trials, the model infers that wa � 1.0, wa � wb � 1.0, and
wb � 0.0. The subsequent B� trials add an additional constraint
that wb � 1.0, but this constraint directly contradicts the pre-
vious constraint that wb � 0.0. Given these incompatible con-
straints, the linear Bayesian model selects intermediate values
of wa and wb, thereby predicting smaller causal ratings for Cue
A following the B� trials.

General Discussion

The belief-distribution and associative approaches have pro-
foundly different implications for our conception of human causal
representations. Under the associative approach, the reasoner is
assumed to learn within-compound associations and maintain a
single hypothesis about the causes of the effect. In contrast, the
belief-distribution approach postulates that humans construct and
maintain multiple hypotheses, coding the uncertainty associated
with each. The latter approach, when instantiated with noisy-
logical generating functions, implies that humans will exhibit
greater flexibility and logical consistency in the use of new infor-
mation to update their beliefs about multiple alternative possible
explanations of the data. Our results show that belief-distribution
accounts offer principled and parsimonious explanations for infer-
ential dependencies and provide a better account of people’s
inferences than associative models. The associative models that we
considered failed to explain the form of inferential dependencies
(Experiments 1A and 1B) and predicted inferential dependencies
in situations where they were not observed (Experiment 2). Their
failure indicates that current associative models, which conflate all
of the possible explanations of the evidence into a single network
state, cannot capture the logical consistency and flexibility of
human causal inference.

Because we only examined the predictions of two variants of a
single belief-distribution model (the noisy-logical and linear
Bayesian models) and four associative models, one might question
the generality of our conclusions regarding belief distribution.
While some caution is warranted, there are strong reasons to
believe that our conclusions generalize beyond these specific mod-
els. First, there are belief-distribution models that explain inferen-
tial dependencies without invoking probability (e.g., propositional
models of causal inference; De Houwer et al., 2005; Lovibond,
2003; Mitchell, De Houwer, & Lovibond, 2009). Propositional
models have been applied to explain backward blocking and
recovery from overshadowing, and they would explain our exper-
imental results as well. There are reasons to believe that probabi-
listic models may provide a more robust account of everyday
causal reasoning than propositional models (Oaksford & Chater,
2007), but propositional and probabilistic models make the same
predictions in many circumstances, and our Bayesian model can be
regarded as a rational quantitative extension of propositional mod-
els.

Second, there is a general case to be made for the inadequacy of
within-compound associations. We know of no associative model
that explains our experimental results, and there is no obvious
modification that would allow within-compound associations to
explain the results. For example, Experiment 2 demonstrated that
within-compound associations can be problematic when they form

between cues with known causal influences. Yet by what means
could an associative model prevent this? Without belief distribu-
tion and a representation of ambiguity, associative models cannot
track whether a cue’s influence is known. Although other features
of the cue may be highly correlated with knowledge of a cue’s
influence, these correlations are imperfect. For example, although
familiarity and certainty are highly correlated (familiar cues tend
to have known causal influences), familiar cues can be constantly
confounded and have unknown causal influences.

Although we have stressed the consequences of failing to dis-
tribute belief across multiple explanations, causal models differ on
many other dimensions. On some of these other dimensions,
associative models offer better accounts of the experimental results
than our Bayesian model (for one review, see Perales & Shanks,
2007). For instance, while associative models offer detailed expla-
nations for the influence of trial order, surprise (e.g., Pearce &
Hall, 1980), and cue salience, our Bayesian model cannot explain
why any of these factors influence people’s inferences. Addition-
ally, there may be other experimental procedures that encourage
associative processing to a greater extent than ours. Our experi-
ments presented no more than a few cues to the participant at any
given point and did not provide trial-by-trial feedback; associative
processing may be more prominent in other circumstances.
Clearly, to offer a complete explanation of causal reasoning, our
Bayesian model would require extension.

Because Bayesian models can be viewed in some respects as
extensions of associative models (Kruschke, 2008), other Bayesian
models may be able to offer a more complete account of causal
inference by incorporating the many insights produced by work on
associative models. Indeed, other Bayesian models of causal learn-
ing are sensitive to trial order (e.g., Daw et al., 2008; Kruschke,
2006; Lu, Rojas, et al., 2008) and the unexpectedness of observa-
tions (Courville, Daw, & Touretzky, 2006). For example, it should
be possible to extend the present model using the framework of
sequential Bayesian inference to account for some aspects of
dynamic causal learning (e.g., Lu, Rojas, et al., 2008).

Given that causal models differ on many dimensions, direct
comparisons between the models is not always as informative as
one would hope. We believe that a more promising research
strategy involves identifying the dimensions of variation across
models of causal inference and testing the role of these differences
in causal inference. Associative models typically explain learning
on a trial-by-trial basis by appealing to error correction, assume
that associations are represented as punctate values, and assume
that the strength of the effect is an additive function of the
associative strengths of its causes. Bayesian models typically
make inferences from summarized data, distribute belief across
multiple parameter-values and explanations, and assume a mech-
anism that can incorporate prior beliefs. Propositional models
distribute belief across multiple causal structures but do not dis-
tribute belief across multiple parameter values. Ideally, research
should aim to determine whether causal learning is propositional
or probabilistic, whether it requires belief distribution, whether it is
penetrable to language and instruction, whether it requires a priori
causal assumptions, and so on.

The present experiments contribute to this endeavor by illus-
trating the importance of representing ambiguity by distributing
belief across multiple explanations. Given the prevalence of am-
biguous evidence in everyday causal reasoning, a representation of
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ambiguity will prove useful when reasoning about causal evidence.
This is something that the noisy-logical Bayesian models of causal
inference clearly have but that associative models and within-
compound associations fail to approximate. Belief distribution—
whether done through probabilistic inference, propositional rea-
soning, or otherwise—plays an important role in explaining how
people reason about inferential dependencies and ambiguous evi-
dence.
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Appendix A

The Comparator Hypothesis and the Modified SOP Model

In this appendix, we describe the comparator hypothesis and the
modified sometimes-opponent-process (SOP) model. We then dis-
cuss the predictions of the models in the experiments.

The Comparator Hypothesis

The comparator hypothesis (Denniston et al., 2001; Miller &
Matzel, 1988; Stout & Miller, 2007) uses response strengths, as
opposed to the typical cue–effect associations, to predict the
effect. According to the comparator hypothesis, the response
strength of a cue (the extent to which it leads to the expectation of
the effect) is computed by comparing its direct and indirect acti-
vation of the effect. The cue’s direct activation of the effect is the
association between the cue and the effect, and the indirect acti-
vation of the effect is the product of the associations along an
indirect path to the effect that traverses a within-compound asso-
ciation. A cue is viewed as causal to the extent that its direct
activation of the effect exceeds its indirect activation of the effect.
Although the comparator hypothesis also posits a more compli-
cated higher order comparison process, this process rarely influ-
ences the predictions of the model in the present article. We note
its influence when it is relevant. Interested readers can find the
details of the higher order comparison process in Stout and Miller
(2007).

The comparator hypothesis updates associations using a modi-
fication of the R-W learning rule (Stout & Miller, 2007):

�Vi,j � sisj(T � Vi,j). (A1)

There are two important differences between Equation A1 and
the R-W learning rule (Equation 9). First, the updated equation is
applied to learn within-compound associations in addition to cue–
effect associations: Vi,j represents the association from cue i to the
variable indexed by j. Depending on whether the variable indexed
by j is a cue or the an effect, Vi,j represents the strength of either
a within-compound association or a cue–effect association. Sec-
ond, Equation 10 calculates the prediction error relative to the
prediction of a single association Vi,j, rather than relative to a sum
of the associations of the present cues. The consequences of this
modification can be seen by considering the AB� trials. During
these trials, the standard R-W rule predicts that the cue–effect
associations will approach 0.5 (see Figure 2), but the comparator

hypothesis predicts that the cue–effect associations will approach
1.0 (see Figure A1).

As is typical for an associative model, the salience of a cue
depends on whether it is present or absent. We assume that the
salience of cue i depends on whether the cue is present (si � �) or
absent (si � 0.0), and the salience of cue j (which could be the
effect) also depends on whether the cue is present (sj � �) or
absent (sj � k1). The strength of the competition from the indirect
activation of the effect is controlled by the parameter k2. There is
a final parameter k3 that influences the extent to which a cue that
has never been paired with the effect competes with other cues. In
all of our simulations of the comparator hypothesis, we assume
that context is ignored.

(Appendices continue)

Figure A1. The asymptotic associations as predicted by the comparator
hypothesis in response to recovery from overshadowing and backward
blocking. The response to Cue B is calculated by comparing its direct
activation of the effect (the association between Cue B and the effect) to its
indirect activation of the effect (the association from Cue B to Cue A
multiplied by the association from Cue A to the effect).
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Figure A1 shows the predicted asymptotic associations in re-
covery from overshadowing (AB� A–) and backward blocking
(AB� A�) according to the comparator hypothesis. After the
AB� trials, the comparator hypothesis predicts that there will be
limited responding to Cue B alone, because Cue B will activate the
effect both directly and indirectly. On subsequent A– trials in
recovery from overshadowing, responding to Cue B will approach
1.0 as the diminishing Cue A–effect association reduces the indi-
rect activation of the effect. In contrast, given that the Cue
A–effect association should already be near ceiling following the
AB� trials, subsequent A� trials in backward blocking would
have a limited influence on responding to Cue B. The comparator
hypothesis predicts that responding to Cue B in backward blocking
will continue to be limited but nonzero: Cue B will continue to
activate the effect both directly and indirectly. Thus, like the
Bayesian model, the comparator hypothesis predicts that people
will be more certain about the causal influence of Cue B following
recovery from overshadowing than following backward blocking.

Modified SOP Model

The modified SOP model (Dickinson & Burke, 1996) extends
the SOP model (Wagner, 1981) to account for retrospective reval-
uations. The model represents each cue by a collection of ele-
ments. Because the model does not distinguish between cues and
effects, the effect is also represented by a collection of elements.
At any given time, an individual element will be in one of three
states: the observed state, the expected state, or the inactive state.
When a cue has not been observed recently and is not expected on
the basis of a within-compound association, all of its elements will
be in the inactive state. However, when a cue has been observed or
is expected, some of its elements will be in these other states.
Observing a cue causes some of its elements to move into the
observed state, and the expectation of a cue (which is established
through within-compound associations) causes some of its ele-
ments to move into the expected state. If a cue is both observed and
expected, then we might find 40% of its elements in the observed
state, 40% in the expected state, and 20% in the inactive state.
Elements in the observed state eventually decay into the expected
state and elements in expected state eventually decay into the
inactive state. Thus, elements of an observed cue decay to the
“expected” state even when the cue is not expected. For this
reason, the observed and expected states are typically referred to
more generally as the A1 and A2 states. However, the A1-to-A2
decay is often ignored when deriving the qualitative predictions of

the model, so we adopt the more descriptive observed and ex-
pected terms.

In the modified SOP model, excitatory learning occurs between
two cues to the extent that they are both in the observed state or
both in the expected state. Inhibitory learning occurs between two
cues to the extent that one is in the observed state, and the other is
in the expected state. No learning occurs otherwise. For example,
if a cue and the effect were presented together and no associations
had been formed yet, some elements of the cue and some elements
of the effect would both move into the observed state. This would
lead to excitatory learning between the cue and the effect.

The upper half of Table A1 shows how the modified SOP
explains recovery from overshadowing (AB� A–) and backward
blocking (AB� A�). On AB� trials, the modified SOP model
learns that each cue is associated with the effect and that there is
a within-compound association between Cues A and B. On sub-
sequent A– or A� trials, Cue B will be expected because of its
within-compound association with Cue A. Hence, many elements
of Cue B will be in the expected state. In recovery from overshad-
owing, the effect will be expected on the basis of its association
with Cue A, so its elements will also enter the expected state. Since
both the effect and Cue B will be in the expected state, the model
predicts that people will become increasingly convinced that Cue
B is a cause of the effect. However, for backward blocking,
because the effect is observed and expected on the basis of its
association with Cue A, its elements will enter both the observed
and expected states. Because Cue B and the effect will be partly in
the same state and partly in different states, this will induce
conflicted (i.e., excitatory and inhibitory) learning. Thus, the mod-
ified SOP model predicts that Cue B should undergo strong learn-
ing on A– trials of recovery from overshadowing (i.e., people
should become certain that Cue B causes the effect) and limited
learning on the A� trials of backward blocking (i.e., people should
remain uncertain about the causal influence of Cue B).

Although the predictions of the modified SOP model are usually
derived qualitatively, we consider a quantitative model to facilitate
comparisons with the other models. When deriving the quantitative
predictions of the model, we employ Aitken and Dickinson’s
(2005) implementation. Following Aitken and Dickinson (2005),
we consider the parameters PI¡A1 (the salience of an observed
cue), l (the overall learning rate), � (the ratio of the observed- and
expected-state learning rates), Ns (the number of elements per
stimulus), and Nd (the rate of decay for elements in State A1).

(Appendices continue)
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Experiments 1A and 1B

Figure 3 shows that the modified SOP model and the compar-
ator hypothesis fail to explain the results in Experiments 1A and
1B. The predictions of the comparator hypothesis are discussed in
the main text. We therefore focus on the predictions of the mod-
ified SOP model here.

Under the standard assumption that excitatory learning and
inhibitory learning approximately counteract each other, the
modified SOP model cannot explain the results of Experiment
1B. To see why, note that the modified SOP model predicts that
learning regarding Cue C will be conflicted in recovery from
preventive overshadowing but unambiguous in preventive back-
ward blocking (see the bottom half of Table A1). This supports
the erroneous prediction that the causal influence of Cue C will
remain ambiguous in recovery from preventive overshadowing
while potentially becoming unambiguous in preventive back-
ward blocking.

Furthermore, the modified SOP model never—even with non-
standard assumptions—predicts the observed result that partici-
pants were more certain in both generative and preventive recov-
ery from overshadowing than in generative and preventive
backward blocking. As Table A1 makes clear, the modified SOP
model predicts that recovery from overshadowing is more similar
to preventive backward blocking than to preventive recovery from
overshadowing. Depending on the assumptions that one makes
about the relative strengths of excitatory and inhibitory learning,
the modified SOP might explain either—but not both—the pattern
of inference in Experiment 1A or the pattern of inference in
Experiment 1B.

Experiment 2

As Figure 4 shows, both the comparator hypothesis and the
modified SOP model predict substantial instability in the causal
ratings for Cue A. According to the comparator hypothesis, the
AB� trials immediately establish Cue B as strong competitor for
Cue A. The comparator hypothesis only predicts stable causal
ratings in the second learning phase when the increase in the Cue

A–effect association counteracts the increased competition from
Cue B. Even when the parameters are set so, however, the B�
trials in Phase 3 will cause Cue B to become a still-stronger
competitor, thereby predicting a later decrease in the causal ratings
for Cue A.

The modified SOP predicts conflicted learning (i.e., both excit-
atory and inhibitory) whenever the effect is both expected and
observed. In principle, this would allow the modified SOP to
explain the stability of Cue A throughout the entire experiment and
to account for the stability of Cue C during the third learning
phase. In practice, however, excitatory and inhibitory learning will
rarely offset each other perfectly. As Figure 4 shows, Aitken and
Dickinson’s (2005) implementation of the modified SOP predicts
substantial changes in the causal ratings for Cues A and C.

(Appendices continue)

Table A1
Selected Predictions of the Modified Sometimes-Opponent-
Process Model for Generative and Preventive Variants of
Recovery from Overshadowing and Backward Blocking

Condition

Activation states
Target-effect

learningTarget cue Effect

Generative variants
RO (AB� A�) E E 1
BB (AB� A�) E O � E 12
Control (AB�) I I none

Preventive variants
pRO (A� ABC� AB�) E O � E 12
pBB (A� ABC� AB�) E E 1
Control (A� AB�) I I none

Note. RO � recovery from overshadowing; BB � backward blocking;
pRO � recovery from (preventive) overshadowing; pBB � (preventive)
backward blocking; E � expected state; O � observed state; I � inactive
state; 1 � excitatory learning, which in isolation would increase the
associative strength; 2 � inhibitory learning, which in isolation would
decrease the associative strength. Learning is shown for trials that are
displayed in boldface. The target cue is Cue B in the upper half of the table
and Cue C in the lower half of the table.
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Appendix B

Model Fitting

The predictions of the associative models are parameter depen-
dent. Whenever we derived the predictions of an associative
model, we selected its parameters to provide the best fit to the
experimental results. For the associative models other than the
modified SOP model, we selected the parameter values by using
the Nelder-Mead method, a gradient-descent procedure, to mini-
mize the mean squared error of the predictions. To reduce the
chances of identifying a local minimum, we performed this fitting
procedure many times, with randomized initial parameters on each
run. The fitting procedure was repeated at least 20 times for each
fit, and the procedure consistently converged to one of a few local
minima on each run.

Because the modified SOP model involves stochastic processes,
its predictions vary slightly from run to run. This simulation noise
limits the effectiveness of the gradient-descent procedures such as
the Nelder-Mead method that propose small steps in the parameter
space. We therefore fit the parameters of the modified SOP model
with a different gradient-descent fitting procedure. For each iter-
ation of the fitting procedure, we sequentially updated each pa-
rameter. To update a parameter, we varied it from 60% to 140% of
its present value in 20% increments, while leaving the other
parameters fixed, and then selected the value of the parameter for
which the model provided the highest correlation with the exper-
imental results (we maximize the correlation, rather than minimiz-
ing the mean squared error, because the associations in the mod-
ified SOP model have no natural maximum or minimum values).
To estimate the model predictions more precisely, we averaged the
predictions of 10 runs of the model at each parameter value. We
iterated the fitting procedure until the model fit stabilized: We
stopped updating the parameters when none of the parameter
values changed during an iteration or when the model fit failed to
improve on three consecutive iterations. Although the specific
parameters found using this procedure differed when the fitting
procedure was repeated multiple times, the final predictions were
always qualitatively similar. The correlations between the final
predictions and the causal ratings were nearly identical each time
the fitting procedure was run: the standard deviation of the corre-
lations across runs was less than .001 for Experiment 1 and was
.011 in Experiment 2.

Note that although the R-W model has three parameters (�, �1,
and �2), the model is fully specified by the values of � * �1 and
�2 / �1: If the individual parameters are varied but these values
remain constant, the model makes the same predictions. When
reporting the parameter values of the R-W model, we therefore
report the values of � * �1 and �2 / �1, rather than the values of
the individual parameters. For similar reasons, for Van Hamme
and Wasserman’s (1994) learning rule and the noisy-logical asso-
ciative model, we report the values of �1 * �1, �2 / �1, and �2 / �1,
rather than reporting the individual parameter values. Finally, we
only report the value of k3 for the comparator hypothesis when it
influences the predictions of the model.

In Experiments 1A and 1B, the predictions for the associative
models used the following best fitting parameters. R-W model:
� * �1 � 0.66 and �2 / �1 � 0.62; Van Hamme and Wasserman’s
(1994) learning rule: �1 * �1 � 0.58, �2 / �1 � –0.37, and �2 / �1 �
0.67; comparator hypothesis4: k1 � –0.75, k2 � 0.49, k3 � 40, and
� � 1.33; the modified SOP model: PI¡A1 � .37, l � 0.028, � �
0.004, Ns � 496, and Nd � 27; the noisy-logical associative model:
�1 * �1 � 0.32, �2 / �1 � –0.62, and �2 / �1 � 0.48.

In Experiment 2, the predictions for the associative used the
following best fitting parameters. The R-W model: � * �1 �
0.33 and �2 / �1 � 0.76; Van Hamme and Wasserman’s (1994)
learning rule: �1 * �1 � 0.35, �2 / �1 � – 0.31, and �2 / �1 �
1.05; the comparator hypothesis: k1 � – 0.72, k2 � 0.39, and
� � 0.51; the modified SOP model: PI¡A1 � .64, l � 0.07, � �
0.13, Ns � 1,187, and Nd � 80; the noisy-logical associative
model: �1 * �1 � 0.23, �2 / �1 � – 0.39, and �2 / �1 � 1.41.

4 Predictions did not differ significantly for k3 � 40. The values for k3

and � lie outside what might be considered their natural range (between
zero and one), but these values produced the best fit. When these values
were constrained to be less than or equal to 1.0, the qualitative predictions
of the model were similar, and the fit was only slightly worse (MSE �
0.070 compared to MSE � 0.064).
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